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Minimum Variance Control over a Gaussian
Communication Channel

J. S. Freudenberg, R. H. Middleton, and J. H. Braslavsky

Abstract—We consider the problem of minimizing the response
of a plant output to a stochastic disturbance using a control law
that relies on the output of a noisy communication channel. We
discuss a lower bound on the performance achievable at a spec-
ified terminal time using nonlinear time-varying communication
and control strategies, and show that this bound may be achieved
using strategies that are linear. We also consider strategies that
are defined over an infinite horizon that may achieve better
transient response that those that are optimal for the terminal
time problem.

I. INTRODUCTION

Recent years have seen much interest in the limitations
imposed on a feedback system by the presence of a noisy
communication channel in the feedback path, as depicted in
Figure 1. One problem is to determine the minimal channel
capacity required to stabilize an open loop unstable plant.
The solution to this problem is known for noise-free data rate
limited channels [24], [25], [29] and additive Gaussian noise
channels [6]. A more difficult problem is that of determining
the optimal performance, in terms of disturbance attenuation,
that is achievable given the presence of a noisy channel with
fixed capacity.
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Fig. 1. Feedback control over a noisy communication channel.

The standard minimum variance control problem consists
of minimizing the variance of a plant output in response to
a stochastic disturbance using a control law that depends on
possibly noisy measurements of that output. A solution to this
problem, in the case of a noise free measurement, is presented
in [2], wherein transfer function methods are used to obtain
the result. An alternate approach, that is applicable with noisy
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measurements, is to solve the “cheap control” Linear Quadratic
Gaussian (LQG) problem, in which a state feedback gain
is applied to an estimate of the plant state obtained from a
Kalman filter.

In the present paper, we assume that the system output
must be communicated to the controller over a Gaussian
communication channel. In this scenario, it may be feasible
to add precompensation (an encoder) before the channel. For
example, we may transmit a filtered version of the system
output, or a signal that depends on measurements of the plant
states, if these are available. The only restriction is that the
channel input must satisfy the power limit of the Gaussian
channel. The flexibility available from channel precompensa-
tion does not come without a price: the certainty equivalence
and separation properties present with LQG optimal control
may no longer be present, thus complicating the design of
communication and control strategies.

A special case of the minimum variance communication
and control problem described above was treated in [11]. In
that paper, it was assumed that the channel input is equal to a
constant scalar multiple of the plant output, and that the control
input is obtained by passing the channel output through a linear
time invariant filter. In the present paper, we consider potential
improvements using more general communication and control
strategies.

Other researchers have studied feedback control perfor-
mance over a communication channel; a partial review follows.
The authors of [22] derive a lower bound on a measure
of disturbance attenuation that is stated in terms of channel
capacity; however, the proof does not invoke causality at any
point, and hence the lower bound may not be tight. In [7],
[8] the authors prove a type of separation principle using an
encoder with access to feedback from the channel output.
The authors of [30] study performance limitations imposed
by a vector Gaussian channel, with one channel for each
state of the plant. The author of [10] relates the problem of
feedback stabilization over a communication channel to that
of communication over a channel with feedback. Performance
limitations imposed by noise free, data rate limited channels
are addressed in [23], [26]. The authors of [3] study the joint
optimum design of communication and control strategies for
feedback over noisy channels, and show that linear strategies
are optimal only for first order linear systems with Gaussian
noise and quadratic cost. Another line of research, not pursued
in the present paper, concerns limitations imposed by packet-
dropping in communication networks; see the recent survey
[17].

The remainder of this paper is outlined as follows. In
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Section II we present models of the linear plant, Gaussian
channel, encoder, and decoder/controller that we shall study,
and pose the problem of minimizing the mean square plant
output at a specified terminal time with no penalty on the
transient response or the control input. We show that the
optimal control at the last time step sets the expected value
of the plant output at the terminal time, conditioned on the
sequence of channel outputs, equal to zero; the mean square
plant output is thus equal to the variance of the optimal
estimation error. We then note that the encoder design problem
reduces to communicating a “message” that depends on the
primitive random variables. In Section III, we derive a lower
bound on achievable performance by temporarily assuming
that the encoder has access to the plant state, the control input,
and the channel output, and deriving linear communication
and control strategies that use this information to transmit
the message defined in Section II over the channel. We use
information theoretic arguments in Section IV to show that the
resulting error is identical to the minimum possible for any
potentially nonlinear communication and control strategies. In
Section V we remove the assumption that the encoder has
access to the control input and to feedback from the channel
output. To do so, we use a control input with a time varying
gain that is synchronized to the time varying gain that the
encoder uses to form the channel input. In Section VI we
make an additional hypothesis that allows us to remove the
assumption that the encoder has access to the state of the
plant; instead, the input to the encoder is the output of a linear
filter whose input is the plant output. The communication and
control strategies that minimize the terminal time cost have
time varying gains, may yield poor transient response, and
cannot be implemented over an infinite horizon. Hence, in
Section VII we consider time invariant communication and
control strategies that, under appropriate hypotheses, result in
the system output becoming stationary. These strategies are
suboptimal for the original problem of finite horizon optimal
control with a terminal constraint only. However, we show by
example that the transient response may be much improved.
In developing the infinite horizon strategies, we are required
to study the solutions to a class of signal to noise ratio (SNR)
constrained Riccati difference equations. Under appropriate
hypotheses, the solution to such an equation converges to
that of a corresponding SNR constrained algebraic difference
equation. Conclusions and directions for further research are
presented in Section VIII.

Notation and Terminology

We use upper case letters to denote random variables, lower
case letters to denote realizations of these random variables,
subscripts to denote elements of a sequence, and superscripts
to denote subsequences, e.g., xk , {x0, x1, . . . , xk}. Denote
the expected value of the random variable X by E{X}. Given
two random variables X and Y , denote the conditional expec-
tation of X given that Y = y by Ey{X} = E{X|Y = y},
and the associated random variable [28] by EY {X}. The
“smoothing property” of conditional expectations [16, p. 498],
[28, p. 123] states that E{X} = E{EY {X}}. It is well

known (cf. [16, p. 504], [18, p. 97]) that the conditional
expectation EY {X} minimizes the variance of the mean square
estimation error with respect to all other functions g(Y ):
E{(X − EY {X})2} ≤ E{(X − g(Y ))2}.

Denote the open unit disk by D. A linear system xk+1 =
Axk + Buk, yk = Cxk is stable if all eigenvalues of A
lie within D, and is strictly minimum phase if all zeros of
its transfer function G(z) = CΦ(z)B lie within D, where
Φ(z) , (zI − A)−1. The relative degree of G(z) is equal to
its excess of poles over zeros. We say that (A,B) is reachable
or stabilizable and that (A,C) is observable or detectable
according to standard definitions [1, pp. 341–342].

II. PRELIMINARIES

Consider the linear system, or “plant”

xk+1 = Axk + Buk + Edk, (1)
yk = Cxk, (2)

with state xk ∈ Rn, control uk ∈ R, process disturbance dk ∈
R, and output yk ∈ R. Assume that the initial state x0 and
disturbance dk are realizations of zero mean Gaussian random
variables X0 and Dk, where X0 and Dk are independent for
all k, X0 has covariance Σ0|−1, and Dk is an independent
identically distributed (i.i.d.) sequence with variance σ2

d.
The control input is based on measurements of the plant

output received from a Gaussian communication channel

rk = sk + nk. (3)

where the channel noise nk is a realization of an i.i.d. Gaussian
random process with zero mean and variance σ2

n. The channel
noise is also assumed to be independent of the initial state
and process disturbance. Assume also that the channel input
sk must satisfy the instantaneous power constraint E{S2

k} ≤ P
for some specified value P > 0.

We shall be interested in communication and control strate-
gies for which the channel input depends causally on the plant
output sequence

sk = fk(yk), (4)

and the control input depends causally on the sequence of
channel outputs

uk = gk(rk). (5)

Note that the encoder (4) and the decoder (5) are potentially
nonlinear and time varying. In the derivation of our results,
we shall temporarily assume that the encoder has access to
more information than is indicated in (4), and determine the
optimal performance in this case. We then show that the
same performance may be achieved without the additional
information.

Denote the conditional expectation of the plant state Xk+1

given the channel output histories Rk−1 = rk−1 and Rk = rk

by x̂k|k−1 = Erk−1{Xk} and x̂k|k = Erk{Xk}, the as-
sociated state estimation errors by x̃k|k−1 = xk − x̂k|k−1

and x̃k|k = xk − x̂k|k, and the error covariance matrices
by Σk|k−1 = E{X̃k|k−1X̃

T
k|k−1} and Σk|k = E{X̃k|kX̃T

k|k}.
Similarly, denote conditional estimates of the system output by
ŷk|k−1 and ŷk|k, and the conditional output estimation errors
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by ỹk|k−1 and ỹk|k. The variance of ỹk|k−1 is thus given by
E{Ỹ 2

k|k−1} = E{(Yk−ERk−1{Yk})2}, and a similar expression
holds for E{Ỹ 2

k|k}.
Our problem is to choose encoding and decoding sequences

fk(yk) and gk(rk), k = 0, . . . , N , to minimize the mean
square value of the system output at terminal time k = N +1,
subject to the channel input power constraint E{S2

k} ≤ P . The
cost function is thus given by

J∗N+1 = inf
fk,gk

k=0,...,N

E{Y 2
N+1}. (6)

It is common to also consider a transient penalty on the
system output, and to penalize the response over an infinite
horizon. Although we do not present optimal solutions to such
problems, in Section VII we provide a lower bound on the
optimal cost together with a class of suboptimal solutions.

The fact that the conditional expectation minimizes the
mean square estimation error implies, for a given choice of
encoder (4) and decoder (5), that

E{Y 2
k+1} ≥ E{Ỹ 2

k+1|k}, k = 0, . . . , N. (7)

By choosing the control uN appropriately, the lower bound
(7) may be achieved with equality at time N + 1.

Lemma II.1 Assume that CB 6= 0. Then the control input

uN = −(CB)−1CAx̂N |N (8)

yields
ŷN+1|N = 0, yN+1 = ỹN+1|N . (9)

Proof: Substituting (8) into the state equations (1)-(2)
yields yN+1 = CAxN −CAx̂N |N + CEdN . The assumption
that the disturbance sequence Dk is zero mean and i.i.d.
implies that ŷN+1|N = 0, and the fact that yN+1 = ỹN+1|N
follows immediately.

We have shown that the optimal control uN sets the mean
square value of the plant output at time N+1 equal to its theo-
retical minimum, which is given by the variance of the condi-
tional estimation error. It remains to determine the encoder
sequence fk(yk), k = 0, . . . , N and the decoder/controller
sequence at earlier times, gk(rk), k = 0, . . . , N−1. Evidently,
Lemma II.1 implies that these should be chosen to minimize
the variance of the estimation error ỹN+1|N .

Let us now consider the information that should be com-
municated over the channel by the encoder. Toward that end,
iterate the state equations (1)-(2) to obtain

yN+1 =

CAN+1x0 +
N−1∑
j=0

CAN−jEdj


+ CEdN +

N∑
j=0

CAN−jBuj . (10)

The disturbance dN does not affect the plant output, and thus
cannot affect the response of a causal encoder, until time N+1.
The control input sequence is determined by the sequence of
channel outputs, and thus may be assumed to be known at the
decoder. These observations imply that the only information

that needs to be communicated over the channel is the term in
parentheses in (10), which we refer to as the “message”, and
whose value is determined by the primitive random variables
x0 and d0, d1, . . . , dN−1:

m(x0, d
N−1) , CAN+1x0 +

N−1∑
j=0

CAN−jEdj . (11)

Although we are given N + 1 uses of the channel to commu-
nicate the message (11), in fact the message does not become
available until the final time step. Hence at each earlier time
step we may only communicate an approximation to (11). A
procedure for doing so that uses linear encoding and decoding
is described in Section III, wherein we simplify the problem
by temporarily allowing the encoder access to the plant state,
control input, and channel output. Optimality of this procedure
is proven in Section IV by showing that nonlinear encoders
and decoders cannot outperform the linear schemes proposed
in Section III. In Section V we show that the performance of
Section III can be achieved using an encoder that has access
only to the state of the plant. We show in Section VI that, under
appropriate additional hypotheses, the performance achieved
using an encoder with access to the state of the plant may
also be achieved using an encoder with access only to the
plant output, as in (4).

III. AN ENCODER WITH ADDITIONAL INFORMATION

Suppose that the encoder has access to perfect measure-
ments of the plant state, the control input, and feedback from
the channel output (cf. Figure 2). We now propose a strategy
for using this additional information to transmit the message
(11) over the communication channel. Later, we shall show
that, under appropriate hypotheses, the performance achieved
with such additional information may also be achieved using
an encoder of the form (4).
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Fig. 2. An encoder that has access to the plant state, plant input, and channel
output.

We first show that access to the plant state and control
input allows the encoder to compute each disturbance input
d0, d1, . . . , dN−1 one time step after it occurs. Choose a row
vector F such that FE 6= 0. Then dk may be computed at
time k + 1:

dk = (FE)−1(Fxk+1−FAxk−FBuk), k = 0, . . . , N−1.
(12)
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Knowledge of the primitive random variables x0 and
d0, d1, . . ., in turn, allows the encoder to compute an es-
timate of the message (11) at each time step. Denote the
conditional estimate of the message (11) at time N − 1
given the primitive random variables available at time k by
mk = Ex0,dk−1{m(X0, D

N−1)}. Then an inspection of (11)
reveals that mk satisfies the recursion

mk+1 = mk + CAN−kEdk, m0 = CAN+1x0. (13)

It follows that m(x0, d
N−1) is the state of the discrete

integrator (13) at time k + 1 = N . Note that mN+1 =
m(x0, d

N−1) + CEdN .
We next propose to transmit mk over the communication

channel, taking appropriate advantage of the noiseless feed-
back link to improve the quality of transmission, and use the
sequence of channel outputs to compute an estimate of the
message (11). Doing so will allow us to estimate yN+1 using
the identity

yN+1 = mN+1 +
N∑

j=0

CAN−jBuj . (14)

For motivation, let us review a technique for communicating
over a channel with feedback described in [4, pp. 166-168]
and [15, pp. 479-481], and depicted in Figure 3. The goal in

Σ ΣΣ����b ����
����b

- - - -

6
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6

?

−

θ sk rk
z−1γk

θ̂k

θ̂k−1

nk

λk
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Fig. 3. Communication over a channel with noiseless feedback.

[4], [15] is to use a Gaussian channel N + 1 times for the
purpose of communicating a single message θ, assumed to be
a Gaussian random variable with zero mean and variance σ2

θ .
Denote the conditional estimate θ̂k , Erk{Θ}, k = 0, . . . , N ,
the estimation error θ̃k , θ − θ̂k, and set θ̂−1 = 0. Then
choosing λk so that E{S2

k} = P , the channel power constraint,
and γk = (1/λk)(1 + σ2

n/P)−1 results in the estimation error
at time N having variance E{Θ̃2

N} = σ2
θ(1 + P/σ2

n)−(N+1).
As described in [4], [15], rate distortion theory may be used to
show that this is the minimum possible error variance, in that
it cannot be further reduced through use of a more complex
(e.g., nonlinear) encoder and decoder.

The scheme depicted in Figure 3 is not directly applicable
to our situation, because the message (11) is not available at
the beginning of channel transmission (cf. the discussion fol-
lowing (11)). Instead, we use the scheme depicted in Figure 4,
and form an estimate of the integrator state (13) based on the
output sequence of a communication channel with feedback.
Note the resemblance between the estimator described below
and the standard Kalman filter [1]. This resemblance is elab-
orated upon in Section V-A (cf. the discussion of Figure 6).

Denote the conditional expectations m̂k|k , Erk{Mk} and
m̂k|k−1 , Erk−1{Mk}, and the associated estimation errors

Σ Σ ΣΣ ���� ����b
��������b

- - -

6

-
?
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6

-

6
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−
λk

m̃k|k−1 sk

nk

rk
z−1Lk

m̂k|k

m̂k|k−1

mk
z−1

mk+1

CAN−kEdk

Fig. 4. Communicating the output of a discrete integrator over a channel
with feedback.

by m̃k|k = mk − m̂k|k and m̃k|k−1 = mk − m̂k|k−1. The
channel input and output in Figure 4 are given by

sk = λkm̃k|k−1, rk = sk + nk, (15)

and the conditional estimates evolve according to the recur-
sions

m̂k|k = m̂k|k−1 + Lkrk, m̂0|−1 = 0, (16)
m̂k+1|k = m̂k|k. (17)

The estimator gain in (16) is equal to

Lk =
λkMk|k−1

λ2
kMk|k−1 + σ2

n

, (18)

and the error covariances Mk|k , E{M̃2
k|k} and Mk+1|k ,

E{M̃2
k+1|k} satisfy the Riccati equations

Mk|k = Mk|k−1 −
λ2

kM2
k|k−1

λ2
kMk|k−1 + σ2

n

, (19)

Mk+1|k = Mk|k + (CAN−kE)2σ2
d, (20)

with initial condition

M0|−1 , CAN+1Σ0|−1A
(N+1)T CT . (21)

It follows readily from (19)-(20) that if M0|−1 > 0, then
Mk|k−1 > 0, ∀k ≥ 0. Similarly, if M0|−1 = 0 but there
exists j such that CAN−jE 6= 0, then Mk+1|k > 0, ∀k ≥ j.
We henceforth simply assume that M0|−1 > 0, and at each
time step choose λk so that

λ2
kMk|k−1 = P. (22)

Then (18)-(19) reduce to

Lk =
1
λk

P
P + σ2

n

, (23)

Mk|k = Mk|k−1
σ2

n

P + σ2
n

. (24)

This reduction reveals the similarity of the communication
schemes in Figures 3 and 4. In each case λk is chosen to
satisfy the channel power constraint with equality. Once λk is
chosen, the formulas for γk in Figure 3 and Lk in Figure 4 are
identical. The only difference is the presence of the disturbance
in Figure 4. With this disturbance present, the variance of the
estimation error m̃N+1|N may be obtained by iterating the
Riccati equations (20) and (24):

MN+1|N = M0|−1

(
σ2

n

P + σ2
n

)N+1

+ σ2
d

N∑
j=0

(CAN−jE)2
(

σ2
n

P + σ2
n

)N−j

. (25)
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Were the disturbance not present in Figure 4, the estimation
error would depend only on the initial state and thus be
identical to that achieved using the procedure described in
[4], [15].

We have shown how to use the additional information
present at the encoder in Figure 4 to obtain an estimate of the
message mN with error variance (25). By the identity (14),
this allows us to obtain an estimate of yN+1:

ŷN+1|N = m̂N+1|N +
N∑

j=0

CAN−jBuj . (26)

It follows from Lemma II.1 that, under optimal control (8),
the system output satisfies yN+1 = ỹN+1|N , and thus from
(14), (25), and (26) that the mean square value of the output
is equal to

E{Y 2
N+1} = M0|−1

(
σ2

n

P + σ2
n

)N+1

+ σ2
d

N∑
j=0

(CAN−jE)2
(

σ2
n

P + σ2
n

)N−j

. (27)

Note that Lemma II.1 only characterizes the control at time
N in terms of the state estimate, which will depend on the
previous control sequence. It follows from (12), however, that
there is no loss of generality in setting the control inputs at
earlier times to zero. The resulting value of uN may then be
computed from (26) , and the entire control sequence is given
by

uk = 0, k = 0, . . . , N − 1, uN = −(CB)−1m̂N+1|N .
(28)

To summarize, we have proposed linear, time varying
communication and control algorithms for the purpose of
minimizing E{Y 2

N+1} in the special case that the encoder has
access to the state of the plant, the control input, and the
channel output. The required computations are summarized as
pseudocode in Figure 5.

IV. OPTIMALITY OF LINEAR TIME-VARYING
COMMUNICATION AND CONTROL

We now show that the communication and control strategies
proposed in Section III are optimal for encoders with the spec-
ified additional information, in the sense that no other causal
strategies can achieve a smaller value of E{Y 2

N+1}. As noted in
Section III, rate distortion theory [4], [15] may be used to show
that the corresponding scheme with no disturbance present is
optimal. In general, one would not expect linear strategies to
be optimal for communication constrained control problems,
although they may indeed be optimal for scalar systems [3].
The latter observation is relevant to the present discussion
because, as we have shown, giving the encoder access to
additional information reduces the optimal control problem (6)
to that of estimating the state of a scalar dynamical system,
specifically that of the discrete integrator (13).

Our approach to proving optimality is based on the results of
[14], wherein the encoder and decoder were assumed to have
the form (4)-(5), and a lower bound was established on the

begin Initialization
m0 = CAN+1x0 ; % (13)
m̂0|−1 = 0 ; % (16)
M0|−1 = CAN+1Σ0|−1A

(N+1)T CT ; % (21)
u0 = 0 ; % (28)

end
for k = 0 to N do

dk = (FE)−1(Fxk+1 − FAxk − FBuk) ; % (12)
mk+1 = mk + CAN−kEdk ; % (13)
sk = λkm̃k|k−1, E{S2

k} = P ; % (15),(22)
m̂k|k = m̂k|k−1 + 1

λk

P
P+σ2

n
rk ; % (16),(23)

m̂k+1|k = m̂k|k ; % (17)
Mk|k = Mk|k−1

σ2
n

P+σ2
n

; % (24)
Mk+1|k = Mk|k + (CAN−kE)2σ2

d ; % (20)
if k < N then % (28)

uk = 0 ;
else

uN = −(CB)−1m̂N+1|N ;

Fig. 5. Pseudocode: communication and control algorithms for an
encoder that computes the disturbance using access to the plant state,
control input, and channel output.

conditional entropy power of the state of a linear dynamical
system given a sequence of outputs from a Gaussian channel.
Conditional entropy power provides a lower bound on the
variance of the conditional estimation error [9, p. 255] and
thus, by inequality (7), on the mean square value of the system
output. It was shown in [14] that for a scalar dynamical system
this bound is tight, and may be achieved using linear encoding
and decoding.

Consider the scalar linear system (13) with state mk.
Following [14], define the conditional entropy of Mk

given the output sequence Rk = rk by Hrk(Mk) =
−E{loge pMk|rk(Mk)}, the conditional entropy power of Mk

given Rk = rk by Nrk(Mk) = (1/2πe)e2H
rk (Mk), and the

average conditional entropy power of Mk given Rk = rk

and averaged over Rk by N(Mk|Rk) = E{NRk(Mk)}. For
simplicity, let nk|k , N(Mk|Rk), and define nk+1|k ,
N(Mk+1|Rk).

It follows by applying Lemmas III.2-III.3 of [14] to the
system (13) that

nk|k ≥ nk|k−1

(
σ2

n

P + σ2
n

)
, (29)

nk+1|k ≥ nk|k + (CAN−kE)2σ2
d. (30)

Iterating the recursions (29)-(30) yields a lower bound on
nN+1|N , the average conditional entropy power of MN+1

given the channel output sequence RN . The fact that condi-
tional entropy power provides a lower bound on the variance
of the conditional estimation error [9], [14], [25] implies that
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MN+1|N ≥ nN+1|N , and thus

E{Ỹ 2
N+1|N} ≥

(
σ2

n

P + σ2
n

)N+1

n0|−1

+ σ2
d

N∑
j=0

(CAN−jE)2
(

σ2
n

P + σ2
n

)N−j

, (31)

where n0|−1 = CAN+1Σ0|−1A
(N+1)T CT . Note for later

reference that we may obtain a lower bound on E{Ỹ 2
k+1|k}

by replacing each occurrence of N in (31) with k.
The lower bound on conditional estimation error (31) holds

only under the assumption that the estimation is conditioned
on N +1 outputs of a Gaussian channel, and does not assume
that the encoder or decoder/controller is linear. Together, the
lower bounds (7) and (31) yield a theoretical lower bound on
the mean square value of the output yN+1. Comparing this
lower bound with (27) shows that the linear communication
and control strategies developed in Section III cannot be
outperformed by more general, possibly nonlinear, strategies.
The proof of optimality uses in an essential way the fact
that the problem in Section III has been reduced to one of
estimating the state of a scalar dynamical system. The authors
of [20, Section 16.4.5] show that a linear encoder and decoder
are optimal for the problem of transmitting the state of a
scalar linear system over a continuous-time Gaussian channel.
For discrete-time systems, the authors of [3] show that linear
strategies are optimal for certain scalar communication and
control problems. Given these observations, the present results
may not be surprising.

V. AN ENCODER WITH STATE INFORMATION ONLY

It is not realistic to assume, as was done in Section III,
that the encoder has access to the channel output, plant
state, and control input. However, we may show that under
appropriate additional hypotheses it is possible to achieve the
same performance as in Section III using an encoder that has
access to only the plant output. Doing so requires several steps,
which we undertake in the present section and in Section VI.

We first assume in Section V-A that the encoder retains
access to all the information available in Section III, but rather
than explicitly computing the disturbance input sequence,
instead transmits a linear combination of the plant states over
the channel. Although this communication scheme retains
the same information pattern at the encoder as that used in
Section III, we shall see in Section V-B that it is easier to
generalize to an encoder that has access to less information.
By way of contrast, the scheme of Section III is more useful
for the purpose of proving optimality, as it reduces the problem
to one for a scalar system.

Recall that the control input used in Section III was assumed
equal to zero until the final time step. This assumption
is maintained, with no loss of generality, in Section V-A.
Assuming that the control is zero until the final time step
is no longer possible in Section V-B, wherein we show that
an appropriate choice of the control input allows the noiseless
feedback path around the channel to be replaced by feedback

through the plant. The assumption that the encoder has access
to the plant states is removed in Section VI.

The authors of [7] consider the problem of estimation over a
Gaussian channel with feedback from the channel output to the
encoder, as we do in Section V-A. Using rate distortion theory,
they determine an encoder and decoder that use the channel
optimally (see also [30]). They also consider an infinite
horizon optimal control problem and show that a separation
property exists between the problems of communication and
control provided that the channel has noiseless feedback from
the output to the encoder. In Section V-B, on the other hand,
we consider a finite horizon control problem with only a
terminal cost, and replace the noiseless feedback from the
channel output to the encoder with an appropriately chosen
control signal. Hence, in our scenario, the separation property
shown in [7] is no longer present.

A. Stage 1: Encoder Retains Access to the Channel Output
and the Control Input

It follows from Lemma II.1 that if the control signal uN

satisfies (8), then the problem of minimizing the terminal
cost reduces to one of estimation, and setting uk = 0, k =
0, . . . , N−1, results in a problem of estimating the state of an
uncontrolled plant over a channel with feedback. Our approach
to this problem is depicted in Figure 6, wherein we define a
time-varying linear combination of states

zk , Hkxk, (32)

and consider the channel input

sk = λkz̃k|k−1, (33)

where ẑk|k−1 = E{Zk|rk−1} and z̃k|k−1 = zk − ẑk|k−1. For
given sequences Hk and λk, the conditional state estimate
satisfies the recursion

x̂k+1|k = Ax̂k|k−1 + ALkrk, (34)

with initial condition x̂0|−1 = 0. The sequences of estimator
gains Lk and error covariance matrices Σk+1|k are given by

Lk = λkΣk|k−1H
T
k /(λ2

kHkΣk|k−1H
T
k + σ2

n), (35)

Σk+1|k = AΣk|k−1A
T

−
λ2

kAΣk|k−1H
T
k HkΣk|k−1A

T

λ2
kHkΣk|k−1H

T
k + σ2

n

+ σ2
dEET , (36)

with initial condition Σ0|−1. For later reference, we note that
the state estimation error satisfies

x̃k+1|k = Ax̃k|k−1 + Edk −ALkrk, (37)

with x̃0|−1 = x0.

Σ Σ Σ Σ��������
b

����b
����

-

6

�

6

- - -

�

-

? ?
-

6

�

---

−

ẑk|k−1

z−1

A

Hk

Hk

dk

E

λk

z̃k|k−1zkxkxk+1 sk

nk

rk
z−1

A

ALk

x̂k+1|k x̂k|k−1

Fig. 6. Estimation over a channel with feedback.
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Note the resemblance between the communication scheme
in Figure 6 and a standard predicting state estimator [1].
Indeed, it is possible to transform the former into the latter
by absorbing λk into Hk and moving the feedback summing
junction from the input to the output of the communication
channel. These manipulations do not affect the response of
the state estimation error x̂k+1|k to the disturbance and noise
inputs and to initial conditions, and thus the expressions (35)
and (36) for the estimator gain and error covariance are
identical to those for a predicting estimator. This equivalence
yields interesting interpretations; for example, the channel
output in Figure 6 is identical to the innovations sequence
of an optimal estimator, and is thus a white noise sequence
[1].

We now show how to choose the sequences Hk and λk,
k = 0, . . . , N , so that the estimation error at time N + 1
satisfies the lower bound (31) with equality. For later reference,
note that the covariance of the output estimation error ỹk+1|k
satisfies

CΣk+1|kCT = CAΣk|k−1A
T CT

−
λ2

kCAΣk|k−1H
T
k HkΣk|k−1A

T CT

λ2
kHkΣk|k−1H

T
k + σ2

n

+ σ2
d(CE)2. (38)

Our first step is to choose the final values of the sequences,
HN and λN .

Lemma V.1 Assume that CAΣN |N−1A
T CT > 0. Then val-

ues of HN and λN that minimize E{Ỹ 2
N+1|N}, subject to the

power constraint E{S2
N} ≤ P , are given by HN = CA and

λ2
N = P/HNΣN |N−1H

T
N . Furthermore, with these choices of

HN and λN ,

E{Ỹ 2
N+1|N} = CAΣN |N−1A

T CT

(
σ2

n

P + σ2
n

)
+ σ2

d(CE)2.

(39)

Proof: Any positive semidefinite matrix X ∈ Rn×n,
whose rank is equal to m, has a matrix square root Y ∈ Rn×m

with rank m that satisfies X = Y Y T . Denote such a square
root for ΣN |N−1 by YN . It follows that

CAΣN |N−1H
T
N = ‖CAYN‖‖HNYN‖ cos φN , (40)

where ‖ · ‖ denotes the Euclidean vector norm, and cos φN ,
|CAYNY T

N HT
N |/ (‖CAYN‖‖HNYN‖). Substituting (40) into

(38) and rearranging yields

CΣN+1|NCT = σ2
d(CE)2

+CAΣN |N−1A
T CT

(
λ2

NHNΣN |N−1H
T
N sin2 φN + σ2

n

λ2
NHNΣN |N−1H

T
N + σ2

n

)
.

(41)

It is straightforward to show that the coefficient of
CAΣN |N−1A

T CT in (41) is a monotonically decreasing
function of λ2

N , and thus λN should be chosen to satisfy the
power constraint with equality. Doing so yields

CΣN+1|NCT = σ2
d(CE)2

+ CAΣN |N−1A
T CT

(
P sin2 φN + σ2

n

P + σ2
n

)
.

Since we assume that ΣN |N−1 is given, it follows that HN

should be chosen as a scalar multiple of CA, in which case
φN = 0.

Our next result builds on Lemma V.1 to exhibit choices of
Hk and λk such that the variance of the output estimation
error at time N + 1 achieves the lower bound (31).

Proposition V.2 Consider the communication channel with
feedback depicted in Figure 6. Choose the channel input
sk, k = 0, . . . , N, to satisfy (33), where

Hk , CAN+1−k. (42)

Assume that HkΣk|k−1H
T
k > 0, and choose λk such that

λ2
k = P/HkΣk|k−1H

T
k . (43)

Then the variance of the estimation error at time k = N + 1
satisfies

E{Ỹ 2
N+1|N} = Z0|−1

(
σ2

n

P + σ2
n

)N+1

+ σ2
d

N∑
j=0

(CAN−jE)2
(

σ2
n

P + σ2
n

)N−j

, (44)

where Z0|−1 , E{Z̃2
0|−1} = CAN+1Σ0|−1A

(N+1)T CT .

Proof: We have shown in Lemma V.1 that the choices
of HN and λN given by (42) and (43) minimize the es-
timation error for a given value of ΣN |N−1. It follows
from (39) that the problem of choosing HN−1 and λN−1

to minimize CΣN+1|NCT reduces to that of minimizing
CAΣN |N−1A

T CT for a given value of ΣN−1|N−2. Compu-
tations similar to those in the proof of Lemma V.1 show that
CAΣN |N−1A

T CT is minimized using the values of HN−1

and λN−1 given by the formulas (42)-(43) with k = N − 1.
Repeating this process yields (44).

Remark V.3 The assumption that HkΣk|k−1H
T
k > 0 in

Proposition V.2 is not restrictive. Indeed, it is straightforward
to show that

Hk+1Σk+1|kHT
k+1 = HkΣk|k−1H

T
k

σ2
n

P + σ2
n

+ σ2
d(Hk+1E)2,

and thus if H0Σ0|−1H
T
0 > 0, then HkΣk|k−1H

T
k > 0, ∀k ≥

0. Similarly, if HjE 6= 0 then HkΣk|k−1H
T
k > 0, ∀k ≥ j.

Corollary V.4 Consider the feedback system of Figure 2,
assume that uk = 0, k = 0, . . . , N − 1, and that uN satisfies
(8). Then yN+1 = ỹN+1|N , and the value of E{Y 2

N+1} is given
by (44).

Let us now provide an interpretation to the linear combina-
tion of states zk = Hkxk, where Hk is defined by (42). To do
so, we iterate the state equations (1)-(2), yielding

yN+1 = CAN+1−kxk +
N∑

j=k

CAN−jBuj +
N∑

j=k

CAN−jEdj .

(45)
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Denote the output at the terminal time under no control
(uj = 0, j = 0, . . . , N ) by yNC

N+1. Then zk is equal to the
conditional expectation of Y NC

N+1 given the state at time k:
zk = E{Y NC

N+1|xk}. Since the values of zk at different times
are correlated with one another, it follows as in Section III that
optimal use of the channel requires feedback from the channel
output to make the channel input proportional to z̃k|k−1. In
Section V-B, we shall see how the feedback from the channel
output may be replaced by an appropriately chosen control
input. By way of contrast, in the present section the control
input is chosen as in Corollary V.4.

B. Stage 2: Encoder has Access only to the Plant State

Suppose that the encoder has access only to the state of the
plant. We now show that by using a specific choice of the
control input sequence, state information alone is sufficient to
yield performance identical to that achieved by the scheme in
Section V-A. A block diagram of the resulting communication
and control system is depicted in Figure 7.

Σ Σ

Σ

Σ Σ

(zI − A)−1

x̂k+1|k����
λkHk

A B

z−1 ����λkHk

B ����
- -

b���� b
����

b
-

?

�

�

6

-

�

6

-

�

-

�

6

�

6

�
? 6

?

-

Fk

C

sk

−

nkLk

E

x̂k|k

xk

dk

uk
yk

rk

Fig. 7. Communication and control with an encoder that has access only to
the plant state.

Proposition V.5 Consider the plant (1)-(2) and the commu-
nication channel (3). Define the sequence Hk as in (42), and
assume that both HkΣk|k−1H

T
k > 0 and Hk+1B 6= 0, for

k = 0, . . . , N . Let the channel input sequence be given by

sk = λkzk, zk = Hkxk, k = 0, . . . , N, (46)

where λk is chosen as in (43). Choose the control sequence

uk = −Fkx̂k|k, (47)

where the control gain is defined by

Fk , (Hk+1B)−1Hk+1A, (48)

and the state estimate x̂k|k satisfies

x̂k|k = x̂k|k−1 + Lk(rk − λkHkx̂k|k−1), (49)
x̂k+1|k = Ax̂k|k + Buk, (50)

with initial condition x̂0|−1 = 0 and estimator gain

Lk =
λkΣk|k−1H

T
k

P + σ2
n

, (51)

Σk+1|k = AΣk|k−1A
T

−
λ2

kAΣk|k−1H
T
k HkΣk|k−1A

T

P + σ2
n

+ σ2
dEET . (52)

Then E{Y 2
N+1} = E{Ỹ 2

N+1|N}, where E{Ỹ 2
N+1|N} is given

by (44).

Proof: The assumption that X0 is a zero mean random
variable implies that x̂0|−1 = 0, and thus that z0 = z̃0|−1.
Furthermore, the definition of zk, the state equation (1), and
the identity Hk+1A = Hk imply that zk+1 = Hkxk +
Hk+1Bkuk + Hk+1Edk, and substituting uk yields zk+1 =
Hkx̃k|k + Hk+1Edk. Since X̃k|k and Dk are zero mean ran-
dom variables, it follows that ẑk+1|k = 0 and zk+1 = z̃k+1|k,
for k = 0, . . . , N . The latter facts have two implications. First,
the definition of zk implies that Hkx̂k|k−1 = 0, and thus that
(49)-(50) reduce to (37). Second, the channel input sequence
sk defined by (46) is identical to the channel input sequence
(33) used in Proposition V.2, and thus the two channel output
sequences rk are also identical. Since the two state estimation
error sequences both satisfy the difference equation (37) with
the same initial condition and the same inputs rk and dk, it
follows that their values are identical at each time step. Finally,
(42) implies that HN+1 = C, and thus uN defined by (47)-
(48) is equal to uN from Lemma II.1, and yN+1 = ỹN+1|N ,
where ỹN+1|N has variance (44).

Let us compare the result of Proposition V.5 with that of
Section V-A, wherein the encoder had access to the channel
output. Such access enabled the encoder to transmit the estima-
tion error z̃k|k−1 over the channel. The control input played no
role in estimation, and was assumed to be zero until the final
time step, after estimation had been completed. An encoder
with access only to the state of the plant cannot compute the
estimation error z̃k|k−1. However, the control defined in (47)
sets ẑk|k−1 = 0, and thus the plant output is equal to the
estimation error: zk = z̃k|k−1. For k = 0, . . . , N , this implies
that the channel input sk defined by (46) is identical to that
in Proposition V.2. At the terminal time k = N + 1, the fact
that HN+1 = C implies that the value of yN+1 is the same
as that obtained in Corollary V.4.

We now provide an additional interpretation to the optimal
control input. Substituting uk defined by (47)-(48) into (45)
yields

yN+1 = CAN+1−kx̃k|k+
N∑

j=k+1

CAN−jBuj+
N∑

j=k

CAN−jEdj .

(53)
Suppose that future values of the control input are set equal
to zero: uj = 0, j = k +1, . . . , N . Then (53) implies that the
optimal control at time k sets the conditional expectation of
the plant output at time N +1 equal to zero: E{YN+1|rk} = 0.
It is also interesting to consider the state feedback control law
uk = −Fkxk, where Fk is defined by (48). This control law
minimizes the cost function Jz ,

∑N+1
k=0 E

{
Z2

k

}
, where zk is

defined by (46). To show this, we note that the optimal state
feedback has the form [5] Fk = −(BT Pk+1B)−1BT Pk+1A,
where Pk is the solution to the Riccati difference equation

Pk = AT Pk+1A−AT Pk+1B(BT Pk+1B)−1BT Pk+1A+HT
k Hk,

with terminal constraint PN+1 = HT
N+1HN+1. It is easy to

verify by backwards induction from k = N + 1 to k = 0
that Pk = HT

k Hk and Fk = (Hk+1B)−1Hk+1A, thus
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agreeing with (48). Furthermore, the control input satisfies
uk = −(CAN−kB)−1CAN+1−kEdk−1 and thus, at each
time step k, cancels the effect upon yN+1 of the disturbance
at the previous time step.

Only in special cases will the optimal control at time k
set the conditional expectation of yk+1 equal to zero. One
of these occurs when the plant is first order (n = 1 in (1)).
In this case, the control gain (48) reduces to Fk = A/B,
and is thus independent of the terminal time N + 1. More
generally, all that (7) tells us about the mean square output
at transient times is that it is bounded below by the variance
of the conditional estimation error. We now derive a general
formula for transient values of the mean square plant output
when the communication and control strategies (46) and (47)
are applied.

Corollary V.6 Assume that the hypotheses of Proposition V.5
are satisfied. Then

E{Y 2
k+1} = CΣk+1|kCT +C(A−BFk)Γk|k(A−BFk)T CT ,

(54)
where Fk is defined by (48), and Γk|k , E{X̂k|kX̂T

k|k}
satisfies the recursion

Γk+1|k+1 = (A−BFk)Γk|k(A−BFk)T

+
λ2

kΣk|k−1H
T
k HkΣk|k−1

P + σ2
n

, (55)

with initial condition Γ0|0 = λ2
0Σ0|−1H

T
0 H0Σ0|−1/(P + σ2

n).

Proof: Substituting the control (47) into the state equa-
tion (1) and applying the definition of x̃k|k yields yk+1 =
CAx̃k|k + C (A−BFk) x̂k|k + CEdk. It follows from
the orthogonal projection principle [5, Appendix E] that
E{X̃k|kX̂T

k|k = 0}. This fact, together with the assumption
that dk is i.i.d., implies that

E{Y 2
k+1} = E{(CAX̃k|k)2}

+ E{(C (A−BFk) X̂k|k)2}+ (CE)2σ2
d. (56)

The fact that x̃k+1|k = Ax̃k|k+Edk implies that the sum of the
first and third terms on the right hand side of (56) is equal to
CΣk+1|kCT , and applying the definition of Γk|k yields (54).
The conditional estimate x̂k|k satisfies the recursion x̂k|k =
x̂k|k−1 +Lk(λkHkx̃k|k−1 +nk), where λk and Lk are chosen
as in (43) and (35). The orthogonal projection principle thus
implies Γk|k = E{X̂k|k−1X̂

T
k|k−1} + LkLT

k (P + σ2
n). Noting

that x̂k|k−1 = Ax̂k−1|k−1 + Buk−1 = (A−BFk−1)x̂k−1|k−1

yields E{X̂k|k−1X̂
T
k|k−1} = (A − BFk−1)Γk−1|k−1(A −

BFk−1)T , and substituting for Lk from (35) yields (55). The
expression for Γ0|0 follows since x̂0|−1 = 0.
In the scalar case, it is easy to verify that A − BFk = 0,
and thus that (7) is satisfied with equality at each time step.
More generally, the second term on the right hand side of
(54) quantifies precisely the additional cost produced by this
control law at every time k < N + 1.

We next present an example to illustrate the transient
behavior of the output and output estimation error for a
communication and control strategy designed according to

Proposition V.5. For purposes of comparison, we also plot
a theoretical lower bound on the variance of the output
estimation error at transient times. To do so, we recall that
the entropy power arguments used to derive (31) show that at
each time k, the estimation error is bounded below by

E{Ỹ 2
k+1|k} ≥

(
σ2

n

P + σ2
n

)k+1

n0|−1

+ σ2
d

k∑
j=0

(CAk−jE)2
(

σ2
n

P + σ2
n

)k−j

, (57)

where n0|−1 = CAk+1Σ0|−1A
(k+1)T CT .

Example V.7 Consider the system (1)-(2) with

A =
[
1.1 1
0 1.2

]
, B = E =

[
0

1.5

]
, C =

[
1 1

]
,

σ2
d = 1, Σ0|−1 =

[
1 0
0 1

]
, (58)

and the channel (3) with P = 10 and σ2
n = 5. Suppose we

apply the optimal communication and control sequences (46)
and (47) that minimize the cost (6) at time N + 1 = 21. The
transient value of the estimation error variance E{Ỹ 2

k+1|k} may
be computed from (38) with Hk and λk given by (42) and
(43). The transient value of E{Y 2

k+1} may be computed from
(54). Both these sequences are plotted in Figure 8. Note that
E{Y 2

k+1} ≥ E{Ỹ 2
k+1|k}, ∀k, as we expect from (7), and that

equality is achieved at the terminal time N + 1 = 21. Also
plotted in Figure 8 is the lower bound (57). As predicted by
the theory, the value of E{Ỹ 2

k+1|k}, and thus that of E{Y 2
k+1},

is equal to this lower bound at the terminal time.

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

k

 

 

E {Y 2
k+1}

E {Ỹ 2

k+1 |k}

lower bound

Fig. 8. Plots of E{Y 2
k+1} and E{Ỹ 2

k+1|k} vs. k for terminal time N +1 =

21 using the communication and control strategies (46)-(47). Also plotted is
the lower bound (57) on E{Ỹ 2

k+1|k}.

It is interesting to note that there is no “separation” between
the tasks of control and estimation at the decoder. Both the
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control gain Fk defined by (48) and the estimator gain Lk

defined by (35) depend on the linear combination Hk of states
to be transmitted over the channel. The control law applied
at times k = 0, . . . , N − 1 is designed to aid in computing
the optimal estimate ŷN+1|N , and the control law at time
k = N sets the output equal to the optimal estimation error.
Hence, although there is no separation between control and
estimation, there is also no conflict because the sole purpose
of control is to aid in estimation until the final step, at which
time estimation relevant to terminal performance has been
completed.

VI. AN ENCODER WITH OUTPUT INFORMATION ONLY

We assumed in Section III that the encoder had access to the
plant state, the control input, and the channel output, and in
Section V-B we assumed access only to the plant state. We now
replace this assumption by allowing the encoder access only
to the response of a linear filter to a noiseless measurement
of the plant output. Under appropriate additional hypotheses,
the same performance will be achieved as when the encoder
had access to the plant state. As we shall see, the filter has
the form of a state estimator that does not require knowledge
of the control input to the plant.

We shall consider the linear system (1)-(2), and construct an
optimal estimate for the state given noise-free measurements
of the plant output and control input. To distinguish these
state estimates from those obtained by processing the channel
output, we define the conditional expectations x̂0

k+1|k ,

E{Xk+1|uk, yk} and x̂0
k|k , E{Xk|uk−1, yk}, and denote

the associated error covariance matrices by Σ0
k+1|k and Σ0

k|k,
respectively. The conditional state estimates x̂0

k+1|k and x̂0
k|k

satisfy the recursions

x̂0
k+1|k = Ax̂0

k|k + Buk (59)

x̂0
k|k = x̂0

k|k−1 + L0
k(yk − Cx̂0

k|k−1), (60)

where L0
k = Σ0

k|k−1C
T (CΣ0

k|k−1C
T )−1 and

Σ0
k+1|k = AΣ0

k|kAT + σ2
dEET (61)

Σ0
k|k = Σ0

k|k−1 − Σ0
k|k−1C

T (CΣ0
k|k−1C

T )−1CΣ0
k|k−1.

(62)

Under appropriate hypotheses, the solution to (61)-(62) con-
verges to a steady state solution with special properties.
Denote the transfer function from dk to yk in (1)-(2) by
Gd(z) = CΦ(z)E.

Lemma VI.1 Assume that (A,E) is stabilizable, (A,C) is
detectable, and that Gd(z) has relative degree one and is
strictly minimum phase. Then, as k → ∞, Σ0

k+1|k → Σss

and L0
k → Lss, where

Σss = σ2
dEET , Lss = E(CE)−1, (63)

and limk→∞Σk|k = 0. Furthermore, the eigenvalues of A −
ALssC are stable and lie at the n−1 zeros of Gd(z) and the
origin.

Proof: The fact that stabilizability and detectability imply
convergence is a standard result [1], and the assumption of

relative degree one implies CE 6= 0. The special form that Σss

and Lss take follows from the discussion in [27, Theorem 3.3],
and the locations of the closed loop eigenvalues are given by
the dual of [19, Theorem 6.37(b)]. The fact that Σk|k converges
to zero follows by substituting Σss into (62).

In general it will be necessary for the encoder to have
access to the control input in order to implement the estimator
(59)-(60). Suppose, however, that we implement a suboptimal
estimator for xk obtained by combining (59) and (60) and
using Lss instead of the optimal gain L0

k. Denoting the state
of this estimator by x̂s

k|k, we have that

x̂s
k+1|k+1 = Ax̂s

k|k + Buk + Lss(yk+1 − CAx̂s
k|k − CBuk).

(64)
We now show, under one additional hypothesis, that the state
estimate in (64) does not depend on the control input, and
converges asymptotically to the state of the plant (1).

Proposition VI.2 Assume that the disturbance in (1) enters
at the control input (E = B) and that the hypotheses of
Lemma VI.1 hold. Then the state estimate x̂s

k|k defined by (64)
may be obtained from

x̂s
k+1|k+1 = Ax̂s

k|k + Lss(yk+1 − CAx̂s
k|k), (65)

where Lss is given by (63) and x̂s
0|0 = x̂s

0|−1 + Lss(y0 −
Cx̂s

0|−1). Furthermore, the state estimation error x̃s
k|k satisfies

x̃s
k+1|k+1 = (A− LssCA)x̃s

k|k, (66)

where the eigenvalues of A−LssCA lie at the n− 1 zeros of
Gd(z) and the origin.

Proof: Substituting (63) into (64) yields (65), and sub-
tracting (65) from (1) yields (66). The eigenvalues of A −
LssCA are identical to those of A−ALssC [1, p. 331] given
by Lemma VI.1.
Proposition VI.2 implies that if the estimator is initialized
so that x̂s

0|−1 = x0, then x̂k|k = xk for k = 0, 1, . . ..
Otherwise x̂k|k → xk at a rate determined by the eigenvalues
of A− LssCA. The former fact implies that, with no loss of
optimality, we may replace the assumption that the encoder has
access to the state of the plant at all times by the assumption
that the encoder knows only the initial state. The latter implies
that if the initial plant state is unknown, then there will be
a transient cost that becomes negligible for sufficiently large
values of k.

VII. INFINITE HORIZON PROBLEMS WITH TRANSIENT
COST

The communication and control strategies presented above
are optimal at a specified terminal time, but are only de-
fined over a finite horizon, and may exhibit poor transient
performance. It is therefore of interest to consider strategies
defined over an infinite horizon, and to evaluate the transient
performance of such strategies. We do so in several steps.
First we assume that the encoder has access to the state
of the plant and transmits a channel input proportional to
a constant linear combination of the plant states, with the
proportionality constant adjusted so that the channel power
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constraint is satisfied with equality. We then use the resulting
channel output sequence as input to an optimal estimator
for the linear combination of states to be transmitted over
the channel at the next time step. The covariance of the
estimation error will be seen to satisfy a Riccati-like difference
equation that depends on the signal to noise ratio (SNR) of
the communication channel. Under appropriate hypotheses,
the solution to this difference equation converges to that of
an associated algebraic equation, and yields a constant and
stabilizing estimator gain. At the same time we apply a control
input that sets the expected value of the channel input at
the next time step equal to zero. Except in special cases,
this control input does not set the plant output equal to the
conditional output estimation error, and we state a version of
Corollary V.6 applicable to the infinite horizon case. Finally
we note, as in Section VI, that if the plant is minimum phase
and has relative degree one, then an estimator may be used
to replace the assumption that the encoder has access to the
states of the plant.

Infinite horizon problems with transient penalty on both
the state and the control are considered in [7], [8], [30]. The
authors of [30] consider a discrete-time LQG problem wherein
feedback control is implemented using a vector channel, with
one channel per state of the system to be controlled; in the
present paper, we consider only a scalar channel. The authors
of [7] consider a discrete-time LQG problem with a scalar
channel that has noise-free feedback from the channel output
to the encoder, and those of [8] consider a continuous-time
version of this problem. They show that a separation exists
between the tasks of control and communication. As we have
already seen, without the noise-free feedback path, there is no
such separation.

With an infinite control horizon, it is necessary to insure that
the feedback system is stable. Denote the unstable eigenvalues
of A by {φi, i = 1, . . . ,m}. The authors of [14] consider the
problem of stabilizing the system (1)-(2) over the communi-
cation channel (3) using a causal, but possibly nonlinear and
time-varying, encoder and decoder/controller. (A preliminary
version of [14] is found in [13].) They show that a necessary
condition for the feedback system to be mean square stable
(i.e., supk E{‖Xk‖2} < ∞) is that the channel SNR satisfies
the lower bound

P/σ2
n > −1 +

m∏
i=1

|φ2
i |. (67)

The capacity of a discrete-time Gaussian channel is de-
termined by the SNR of the channel through the formula
C = (1/2) log2(1 + P/σ2

n) [9]. It thus follows from (67)
that a necessary condition for stabilization is that the channel
capacity satisfy the lower bound C >

∑m
i=1 log2 |φi|. This

formula for channel capacity has been derived in a variety
of contexts for Gaussian and noise-free digital channels (e.g.
[6], [25], [29]). It is shown in [6] that if the disturbance is
not present in (1), then the lower bound (67) can be achieved
arbitrarily closely using a unity decoder and a channel input
that is a constant linear combination of the states of the plant.
If the plant is minimum phase and has relative degree one,

then the same result may be obtained by passing the plant
output through a linear time-invariant filter.

If a disturbance is present, then a procedure described in
[11], [12] may be used to show that stabilization is possible
for any SNR that satisfies the bound (67); however, the mean
square norm of the system output may become very large. A
number of authors have shown that imposing a performance
requirement will require a larger channel capacity or SNR than
that required only for stabilization [7], [22], [30]. To illustrate,
let us consider the case of a scalar system xk+1 = Axk +
uk + dk, yk = xk, where uk depends on the output of a
Gaussian channel, as in (3)-(5). Suppose we want the mean
square norm of the state to satisfy the performance bound
supk E{|Xk|2} < D. Then [14, eqn. (21)] implies that

D ≥ σ2
d

1− |A|2/22C , (68)

and thus the performance specification can be satisfied only if
D > σ2

d. This fact is a consequence of causality: the control
at time k can depend only on past values of the disturbance
sequence. Since the latter is assumed to be i.i.d., it follows
that uk can do nothing to attenuate the effect of dk upon the
state of the plant. Rearranging (68) yields

C ≥ log2 |A| − (1/2) log2(1− σ2
d/D), (69)

and we see that the capacity necessary for stabilization be-
comes unbounded as D approaches σ2

d. A lower bound on
capacity for a disturbance with σ2

d = 1 is derived in [7]; for a
scalar plant, it follows from Theorem 4.8 and Remark 4.9 (iv)
of [7] that the capacity required for stabilization must satisfy
the bound C ≥ log2 |A| − (1/2) log2(2πeD), which is less
informative than (69). Finally, it is shown in [14] that the
bound (68) is tight in that it is achievable using (linear)
communication and control strategies. Generalizations of (68),
and thus of (69), to higher order plants are available; however,
as discussed in [14], one would not expect the generalized
bounds to be tight.

We now proceed to the main results of this section. Assume
temporarily that the encoder has access to the state of the plant,
choose a row vector H such that HB 6= 0, and define channel
input and control sequences by

sk = λkzk, zk = Hxk (70)

uk = −Fx̂k|k, F , (HB)−1HA. (71)

The state estimate x̂k|k is obtained at the decoder from the
recursions

x̂k+1|k = Ax̂k|k + Buk,

x̂k|k = x̂k|k−1 + Lk(rk − λkHx̂k|k−1),

where the estimator gain is given by

Lk = λkΣk|k−1H
T /(λ2

kHΣk|k−1H
T + σ2

n), (72)

and Σk|k−1 satisfies the Riccati difference equation

Σk+1|k = AΣk|k−1A
T

−
λ2

kAΣk|k−1H
T HΣk|k−1A

T

λ2
kHΣk|k−1HT + σ2

n

+ σ2
dEET , (73)
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with initial condition Σ0|−1.
Corresponding to Lemma II.1 we have that, with the con-

trol (71) applied, ẑk+1|k = 0 and zk+1 = z̃k+1|k, where
ẑk+1|k = Erk{Zk+1} and z̃k+1|k = zk − ẑk+1|k. It follows
that the channel input satisfies sk = λkz̃k|k−1, and thus
E{S2

k} = λ2
kE{Z̃2

k|k−1} = λ2
kHΣk|k−1H

T .
Suppose that λk is adjusted so that λ2

kHΣk|k−1H
T = P .

Then (73) reduces to

Σk+1|k = AΣk|k−1A
T

−
AΣk|k−1H

T HΣk|k−1A
T

HΣk|k−1HT

P
P + σ2

n

+ σ2
dEET . (74)

We shall refer to (74) as an “SNR constrained” Riccati differ-
ence equation. The corresponding SNR constrained algebraic
Riccati equation is given by

Σ = AΣAT − AΣHT HΣAT

HΣHT

P
P + σ2

n

+ σ2
dEET . (75)

Properties of standard Riccati equations are well known [1],
including the conditions for existence of a stabilizing solution
to the algebraic equation, and for convergence of the solution
to the difference equation to that of the algebraic equation.
We now develop similar properties for the SNR constrained
Riccati equations (74) and (75). Our first result provides
conditions under which (75) has a unique solution that yields
a stable state estimator.

Proposition VII.1 Assume that (A,E) is stabilizable, (A,H)
is detectable, and that the channel SNR satisfies the lower
bound (67). Then the SNR constrained algebraic Riccati
equation (75) has a unique positive semidefinite solution Σ̄
with the property that HΣ̄HT > 0. Define λ̄2 = P/HΣ̄HT .
Then the eigenvalues of A − λ̄AL̄H lie inside the open unit
circle, where

L̄ =
1
λ̄

Σ̄HT

HΣ̄HT

P
P + σ2

n

. (76)

Proof: Define λ2 , P/HΣHT , substitute into (75), and
multiply both sides of the result by λ2, yielding

λ2Σ = λ2AΣAT − λ4AΣHT HΣAT

λ2HΣHT + σ2
n

+ λ2σ2
dEET . (77)

Define Ξ , λ2Σ, and substitute into (77), resulting in a
standard Riccati equation

Ξ = AΞAT − AΞHT HΞAT

HΞHT + σ2
n

+ λ2σ2
dEET . (78)

The solution to (78) is the steady state covariance of the
estimation error for the state of the system ξk+1 = Aξk+λEdk

based on the noisy measurement rk = Hξk + nk. We now
study the dependence of Ξ upon the parameter λ2.

Suppose first that λ2 = 0 in (78). Then it follows from the
proof of Theorem III.1 in [6] that (78) has a solution Ξ0 that
satisfies HΞ0H

T = σ2
n

(
−1 +

∏m
i=1 |φi|2

)
. The assumption

that (67) is satisfied implies that HΞ0H
T < P . Next suppose

that λ2 > 0. The assumptions of stabilizability and detectabil-
ity imply that (75) has a unique positive semidefinite solution

Ξλ [1], and that all the eigenvalues of A − ALλH , where
Lλ , ΞλHT /(HΞλHT + σ2

n), lie inside the open unit circle.
The steady state variance of the estimation error for the

linear combination of states Hξk is given by HΞλHT . An
alternate expression may be obtained from [11, eqn. (34)],
and is given by

HΞλHT = σ2
n

(
−1 +

m∏
i=1

|φi|2e2I∞(r;λd)

)
,

where I∞(r;λd), the mutual information rate [22] between
the disturbance and the measurement, is equal to

I∞(r;λd) ,
1
4π

∫ π

−π

loge

(
1 + |Gd(ejω)|2 λ2σ2

d

σ2
n

)
dω.

It follows immediately that HΞλHT is a monotonically in-
creasing and unbounded function of λ. Hence there exists a
value of λ, call it λ̄, for which HΞλ̄HT = P .

Substitute λ̄ into (78) and define Σ̄ = Ξλ̄/λ̄2. Then
HΣ̄HT = P/λ̄2 > 0, and working backwards yields

Σ̄ = AΣ̄AT − AΣ̄HT HΣ̄AT

HΣ̄HT

P
P + σ2

n

+ σ2
dEET .

It follows that Σ̄ obtained as described above is the unique
positive semidefinite solution to the SNR constrained Riccati
equation (75), and that A− λ̄AL̄H has stable eigenvalues.

Corollary VII.2 Assume, in addition to the hypotheses of
Proposition VII.1, that (A,E) is reachable. Then Σ̄, the unique
positive semidefinite solution to (75), is in fact positive definite.

�

Our next step is to show that, under appropriate hypotheses,
the solution of the difference equation (74) converges to the
positive definite solution of (75). We first present a series of
preliminary results. Define

RDE(X) , AXAT − AXHT HXA

HXHT

P
P + σ2

n

+ σ2
dEET .

(79)

Lemma VII.3 Assume that X1 and X2 are symmetric matri-
ces satisfying X1 ≥ X2 > 0. Then RDE(X1) ≥ RDE(X2).

Proof: If X is invertible then (79) is equivalent to

RDE(X) = A

(
X−1 +

P
σ2

n

HT H

HXHT

)−1

AT + σ2
dEET .

(80)
The assumption that X1 ≥ X2 implies that X−1

2 ≥ X−1
1 and

(HT X2H)−1 ≥ (HT X1H)−1. The result follows by using
these inequalities in (80).

Lemma VII.4 Consider the SNR-constrained Riccati differ-
ence equation (74) with initial condition Σ0|−1 > 0. (i)
Suppose that Σ1|0 ≥ Σ0|−1. Then Σk+1|k ≥ Σk|k−1, ∀k ≥ 0.
(ii) Suppose that Σ1|0 ≤ Σ0|−1. Then Σk+1|k ≤ Σk|k−1,
∀k ≥ 0.

Proof: (i) It follows from Lemma VII.3 that if Σk+1|k ≥
Σk|k−1, then RDE(Σk+1|k) ≥ RDE(Σk|k−1), and thus
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Σk+2|k+1 ≥ Σk+1|k. The result follows by mathematical
induction and the assumption that Σ1|0 ≥ Σ0|−1. The proof
of (ii) is analogous.

Lemma VII.5 Consider the SNR-constrained Riccati differ-
ence equation (74) and the associated algebraic Riccati equa-
tion (75). Assume that the hypotheses of Corollary VII.2 are
satisfied, so that (75) has a unique positive definite solution
Σ̄ > 0. (i) Suppose that Σ0|−1 ≤ Σ̄. Then Σk+1|k ≤ Σ̄, ∀k ≥
0.

Proof: (i) Since Σ̄ = RDE(Σ̄), it follows from
Lemma VII.4 that if Σk|k−1 ≤ Σ̄, then Σk+1|k ≤ Σ̄. Hence the
result follows by mathematical induction and the assumption
that Σ0|−1 ≤ Σ̄. The proof of (ii) is analogous.

We next use these lemmas to prove our main convergence
result. We note that the proof is not a straightforward extension
to that of the analogous result for standard Riccati equations
[1].

Proposition VII.6 Consider the SNR-constrained Riccati dif-
ference equation (74) and the associated algebraic Riccati
equation (75). Assume that (A,E) is reachable, (A,H) is
detectable, and that the channel SNR satisfies the bound (67).
Then, for any initial condition Σ0|−1, the sequence Σk+1|k
defined by (74) converges to Σ̄.

Proof: The assumption that (A,E) is reachable implies
that the solution to (74) will be positive definite after at most n
time steps. Hence, with no loss of generality, we assume that
Σ0|−1 > 0 and establish upper and lower bounds on Σk+1|k
that each converge to Σ̄. To do so, choose α− ∈ (0, 1] and
α+ ∈ [1,∞) such that α−Σ̄ < Σ0|−1 < α+Σ̄, and define
initial conditions Σ−0|−1 , α−Σ0|−1 and Σ+

0|−1 , α+Σ0|−1.
Denote the corresponding solutions to the Riccati equation
(74) by Σ−k+1|k and Σ+

k+1|k, respectively. By construction,
Σ−0|−1 ≤ Σ0|−1 ≤ Σ+

0|−1, and thus Lemma VII.3 implies that

Σ−k+1|k ≤ Σk+1|k ≤ Σ+
k+1|k, ∀k ≥ 0. (81)

It remains to show that the bounding sequences in (81)
converge to Σ̄. Note that

Σ+
1|0 = α+

(
AΣ̄AT − P

P + σ2
n

AΣ̄HHT Σ̄AT

HΣ̄HT

)
+ σ2

dEET

= α+Σ̄ + (1− α+)σ2
dEET ,

and thus Σ+
1|0 ≤ Σ+

0|−1 because α+ ≥ 1. Similarly, one can
show that Σ−1|0 ≥ Σ−0|−1. Therefore, by Lemma VII.5, Σ+

k+1|k
is a monotonically non-increasing sequence bounded below by
Σ̄, and similarly, Σ−k+1|k is a monotonically non-decreasing se-
quence bounded above by Σ̄. Hence both sequences converge,
and since the assumptions imply that (75) has a unique positive
definite solution Σ̄, both sequences must converge to Σ̄. The
result then follows from (81).

The following result collects a number of facts about
the steady state output and output estimation error; part (a)
corresponds to Corollary V.6 for the finite horizon case.

Corollary VII.7 Assume that the hypotheses of Proposi-
tion VII.6 are satisfied.
(a) In the limit as k → ∞, the system output becomes

stationary and

E{Y 2
k+1} = CΣ̄CT +C(A−BF )Γ̄(A−BF )T CT , (82)

where F is defined by (71), Γ̄ satisfies the algebraic
Lyapunov equation

Γ̄ = (A−BF )Γ̄(A−BF )T +
λ̄2Σ̄HT HΣ̄
P + σ2

n

, (83)

and λ̄2HΣ̄HT = P .
(b) Suppose further that the channel SNR satisfies the lower

bound P/σ2
n > ρ2(A) − 1, where ρ(A) denotes the

spectral radius of A. Then the variance of the steady state
output estimation error satisfies the lower bound

CΣ̄CT ≥ σ2
d

∞∑
`=0

(CA`E)2
(

σ2
n

P + σ2
n

)`

. (84)

(c) Assume that (A,H) is observable, and that Gd(z) is
minimum phase and has relative degree equal to one.
Then, in the limit as P/σ2

n → ∞, the output estimation
error satisfies CΣ̄CT = σ2

d(CE)2, independently of the
choice of H .

Proof: The identity (a) follows by adapting Corollary V.6
to the infinite horizon case. The lower bound (b) follows by
noting that CΣ̄CT = limk→∞ E{Ỹ 2

k+1|k}, and taking the limit
of the right hand side of (57). To prove (c), we note that in the
limit as P/σ2

n → ∞, the SNR limited Riccati equation (75)
reduces to a standard Riccati equation in the case of perfect
measurements. The assumptions of relative degree one and
minimum phase imply that the solution to (75) has the form
Σ̄ = σ2

dEET [27], and (c) follows.
We note that the lower bound (57) is achievable for any finite

value of k using time varying communication and control. The
lower bound (84), on the other hand, may not be achievable;
indeed, it remains finite for SNRs that are smaller than the
minimum (67) required for stabilization. As P/σ2

n →∞, (84)
converges to σ2

d(CE)2, and is thus achievable by the result of
Corollary VII.7 (c).

Example VII.8 Consider the linear system (58) discussed in
Example V.7. In that example, we considered the optimal
control and communication strategies (46)-(47) for terminal
time N +1 = 21. The plots in Figure 8 show that the optimal
terminal time strategy has poor transient response, both in
terms of the optimal estimation error and the mean square
value of the system output. Suppose instead that we apply the
strategies (70)-(71), with H = C. Then F defined in (71)
satisfies F = (CB)−1CA, and it follows from the proof of
Lemma II.1 that E{Y 2

k+1} = E{Ỹ 2
k+1|k}. The plot of E{Y 2

k+1}
with H = C in Figure 9 shows, as expected, that the terminal
cost is greater than that achieved with the optimal strategies
(46)-(47); on the other hand, a comparison with Figure 8 shows
that the transient response is much improved. Other choices
of H are also possible, however, it will no longer be true that
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E{Y 2
k+1} = E{Ỹ 2

k+1|k}. For example, plots of E{Y 2
k+1} and

E{Ỹ 2
k+1|k} are also depicted in Figure 9 for the case H = CA.

In this particular case, the latter choice of H yields values of
both E{Y 2

k+1} and E{Ỹ 2
k+1|k} that are both smaller than those

obtained with H = C.
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E {Ỹ 2

k+1 |k}(H = CA)

lower bound

Fig. 9. Plots of E{Y 2
k+1} and E{Ỹ 2

k+1|k} vs. k for terminal time N +1 =

21 using the communication and control strategies (70)-(71), with H = C
and H = CA. Also plotted is the lower bound (57) on E{Ỹ 2

k+1|k}.

It is not, in general, true that the performance achieved with
H = CA is better than that achieved with H = C. To illus-
trate, in Figure 10 we compare the steady state performance
achieved with both strategies as a function of channel SNR.
Also shown in Figure 10 is a plot of the limit (84), which
is a lower bound on the performance achievable with any
communication and control strategies. We note that the scheme
H = CA outperforms H = C for low SNRs, including the
case P/σ2

n = 2, which corresponds to Figure 9. For high
SNRs, the estimation error for both cases converges to the
theoretical minimum, given by σ2

d(CE)2, and as the SNR
decreases to the minimum (67) required for stabilization, the
response becomes unbounded. Note that the lower bound (84)
remains finite for SNRs smaller than that given by (67). This
is not a contradiction, because (84) is obtained by taking the
limit of the lower bound (57), which is known to be tight only
for finite values of k.

The last step is to remove the assumption that the encoder
has access to the state of the plant. This may be done as
in Proposition VI.2. Over an infinite horizon, the effect of
a mismatch between the initial conditions of the plant and
estimator converges to zero.

VIII. CONCLUSIONS

We have derived optimal communication and control strate-
gies for the problem of minimum variance control with a
terminal constraint only, and shown that the optimal strategies
are linear and time varying. We have also derived suboptimal
strategies that may be implemented over an infinite horizon,

10
0

10
1

10
2

10
0

10
1

10
2

channel SNR, P /σ
2
n

 

 

E {Y 2
k

= Ỹ
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Fig. 10. Plots of steady state E{Y 2
k+1} and E{Ỹ 2

k+1|k} vs. SNR using the
communication and control strategies (70)-(71), with H = C and H = CA.
Also plotted is the lower bound (84) on E{Ỹ 2

k+1|k}.

and provided a set of conditions under which these strategies
are stabilizing. Our derivations reveal interesting connections
between different bodies of previous literature. In particular,
the fact that the optimal control input at time k sets the
expected value of zk+1 equal to zero is well known in the
literature on minimum variance control (e.g., [2, Section 6.2],
[16, Section 10.3.1]), although the result is usually stated for
stationary systems. The design procedure known as “discrete-
time loop transfer recovery” [21], [31] uses a controller that
sets the system output equal to the conditional estimation error
[11, Prop. III.1], and thus also sets the expected value of the
output at the next time step equal to zero.

We have noted that, for the purpose of minimizing the
terminal cost (6), there is no separation between the tasks of
communication and control, but that also there is no conflict.
The latter fact is because the sole purpose of control until
the final time step is to improve the estimate of the output
available at the final time step, and that the last control
input sets the output equal to the estimation error. The lack
of conflict arises because a performance penalty is imposed
only at the final time step. For finite horizon problems with
a performance penalty imposed upon the transient response,
a conflict between communication and control will arise.
Although we do not present an optimal solution to such
problems, we note that a solution to the problem (6) yields
a lower bound on the optimal value of such a cost, namely

inf
fk,gk

k=0,...,N

N∑
`=0

E{Y 2
`+1} ≥

N∑
`=0

J∗`+1,

where J∗`+1 denotes the optimal solution to (6) with N = `.
Finally, in the interest of isolating the performance limita-

tions imposed by the Gaussian communication channel, we
have made many simplifying assumptions that may not be
satisfied in practice. For example, we have assumed that the
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plant is minimum phase and relative degree one, that there is
no penalty imposed on the control signal, and that the channel
is memoryless and Gaussian. Removing these assumptions will
be the subject of future research.
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